organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter G. Jones,* Axel K. Fischer, Jochen Krill and Reinhard Schmutzler

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study T = 143 K Mean σ (C–C) = 0.002 Å R factor = 0.027 wR factor = 0.072 Data-to-parameter ratio = 23.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(Di-*tert*-butylphosphino)(dimethylphosphino)methane disulfide

The title compound, $C_{11}H_{26}P_2S_2$, displays crystallographic mirror symmetry. Key bond lengths (Å) are P1-C(methylene) 1.8464 (18), P1-C(butyl) 1.8711 (13), P2-C(methylene) 1.8266 (18), P2-C(methyl) 1.7948 (15), P1=S 1.9631 (8) and P2=S 1.9552 (8), where P1 is the di-*tert*-butylphosphino P atom and P2 is the dimethylphosphino P atom. The angle P-C-P [124.31 (10)°] is wide and S=P-C(methylene) [108.91 (6)°] narrow. Steric pressure from the *tert*-butyl groups may cause some of the molecular dimensions to depart from normal values.

Received 15 August 2002 Accepted 16 August 2002 Online 23 August 2002

Comment

The title compound, (I), arose as an unexpected product during studies of triphosphines (Krill *et al.*, 1993; see Experimental). The molecule, which is shown in Fig. 1, displays crystallographic mirror symmetry, with both P and S atoms and the central atom C1 lying in the mirror plane at y = 0.25. The configuration about the bond P1-C1 is that atoms S1 and P2 are exactly synperiplanar; in contrast, atoms S2 and P1 are exactly antiperiplanar about C1-P2. A search of the Cambridge Structural Database (Allen & Kennard, 1993; Version of April 2002) revealed only one other bis(dialkyl)-phosphinomethane disulfide, namely the tetramethyl analogue, henceforth 'Me4' (Karsch *et al.*, 1992); this has no imposed symmetry (but twofold symmetry to a close approximation) and has S-P-C-P torsion angles of 48.4 and 48.7 (5)°.

Selected molecular dimensions for (I) are presented in Table 1. The P—S and P–C(methylene) bond lengths in (I) are comparable with those of Me4 [P—S 1.958 (1) and 1.960 (1) Å, and P–C 1.822 (2) and 1.818 (2) Å], although P–C2 is slightly longer. This may be attributable to the steric pressure of the bulky *tert*-butyl group, as may the appreciably different bond lengths P1–C2 and P2–C6. The bond angle S1—P1–C1 appears normal [*cf.* Me4; 115.5 (1) and 116.6 (1)°], but S2—P2–C1 is unusually narrow at 108.91 (6)°. The angle at the methylene C atom is wide [*cf.* Me4; 119.0 (1)°], which may also be caused by steric effects; comparable structures for a more detailed analysis are not available.

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Experimental

Attempts to recrystallize bis[(di-*tert*-butylphosphanyl)methyl]methylphosphane trisulfide (Krill *et al.*, 1993) from diethyl ethertoluene led unexpectedly to crystals of the title compound.

Mo $K\alpha$ radiation

reflections

T = 143 (2) K

 $h = -2 \rightarrow 23$

 $k = -9 \rightarrow 16$

3 standard reflections

frequency: 60 min

intensity decay: none

 $w = 1/[\sigma^2(F_o^2) + (0.0363P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

+ 0.6264P]

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

 $l = -8 \rightarrow 8$

Tablet, colourless

 $0.7 \times 0.6 \times 0.5 \ \text{mm}$

 $\theta = 10{-}11.5^{\circ}$ $\mu = 0.53 \text{ mm}^{-1}$

Cell parameters from 52

Crystal data

 $C_{11}H_{26}P_2S_2$ $M_r = 284.38$ Orthorhombic, *Pnma* a = 18.298 (5) Å b = 12.792 (3) Å c = 6.586 (2) Å $V = 1541.6 (7) Å^3$ Z = 4 $D_x = 1.225 \text{ Mg m}^{-3}$

Data collection

Stoe Stadi-4 diffractometer ω/θ scans 2346 measured reflections 1854 independent reflections 1712 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.020$ $\theta_{\text{max}} = 27.5^{\circ}$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.072$ S = 1.071854 reflections 80 parameters H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

P1-C1	1.8464 (18)	P2-C6	1.7948 (15)
P1-C2	1.8711 (13)	P2-C1	1.8266 (18)
P1-S1	1.9631 (8)	P2-S2	1.9552 (8)
C1-P1-C2	103.61 (5)	C6-P2-C1	108.37 (6)
$C2-P1-C2^{i}$	114.34 (8)	C6-P2-S2	112.87 (5)
C1-P1-S1	114.18 (6)	C1-P2-S2	108.91 (6)
C2-P1-S1	110.43 (5)	P2-C1-P1	124.31 (10)
C6 ⁱ -P2-C6	105.27 (11)		
S2-P2-C1-P1	180.0	S1-P1-C1-P2	0.0
C2-P1-C1-P2	120.17 (5)	C1-P1-C2-C4	-179.55 (10)
Symmetry code: (i) $x, \frac{1}{2}$	- y, z.		

The methylene H atoms were included using a riding model, while methyl H atoms were identified in difference syntheses and refined

Figure 1

The molecule of the title compound in the crystal. Ellipsoids represent 30% probability levels. H-atom radii are arbitrary. Only the asymmetric unit is numbered.

using idealized rigid methyl groups allowed to rotate but not tip. C– H bond lengths were fixed at 0.98 and 0.99 Å for methyl and methylene H atoms, respectively; $U_{\rm iso}({\rm H})$ values were fixed at 1.2 times the $U_{\rm eq}$ values of the parent atom.

Data collection: *DIF*4 (Stoe & Cie, 1992); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1992); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. The authors thank Mr A. Weinkauf for technical assistance.

References

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.

- Karsch, H. H., Baumgartner, G., Gamper, S., Lachmann, J. & Müller, G. (1992). Chem. Ber. 125, 1333–1339.
- Krill, J., Shevchenko, I. V., Fischer, A., Jones, P. G. & Schmutzler, R. (1993). *Chem. Ber.* 126, 2379–2382.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Stoe & Cie (1992). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.