Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones,* Axel K. Fischer, Jochen Krill and Reinhard Schmutzler

Institut für Anorganische und Analytische
Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=143 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.027$
$w R$ factor $=0.072$
Data-to-parameter ratio $=23.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

(Di-tert-butylphosphino)(dimethylphosphino)methane disulfide

The title compound, $\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{P}_{2} \mathrm{~S}_{2}$, displays crystallographic mirror symmetry. Key bond lengths (\AA) are $\mathrm{P} 1-\mathrm{C}$ (methylene) 1.8464 (18), P1-C(butyl) 1.8711 (13), P2-C(methylene) 1.8266 (18), $\mathrm{P} 2-\mathrm{C}$ (methyl) 1.7948 (15), $\mathrm{P} 1=\mathrm{S} 1.9631$ (8) and $\mathrm{P} 2=\mathrm{S} 1.9552$ (8), where P 1 is the di-tert-butylphosphino P atom and P 2 is the dimethylphosphino P atom. The angle $\mathrm{P}-$ $\mathrm{C}-\mathrm{P} \quad\left[124.31(10)^{\circ}\right] \quad$ is wide and $\mathrm{S}=\mathrm{P}-\mathrm{C}$ (methylene) [108.91 (6) ${ }^{\circ}$] narrow. Steric pressure from the tert-butyl groups may cause some of the molecular dimensions to depart from normal values.

Comment

The title compound, (I), arose as an unexpected product during studies of triphosphines (Krill et al., 1993; see Experimental). The molecule, which is shown in Fig. 1, displays crystallographic mirror symmetry, with both P and S atoms and the central atom C 1 lying in the mirror plane at $y=$ 0.25 . The configuration about the bond $\mathrm{P} 1-\mathrm{C} 1$ is that atoms S 1 and P 2 are exactly synperiplanar; in contrast, atoms S2 and P 1 are exactly antiperiplanar about $\mathrm{C} 1-\mathrm{P} 2$. A search of the Cambridge Structural Database (Allen \& Kennard, 1993; Version of April 2002) revealed only one other bis(dialkyl)phosphinomethane disulfide, namely the tetramethyl analogue, henceforth 'Me4' (Karsch et al., 1992); this has no imposed symmetry (but twofold symmetry to a close approximation) and has $\mathrm{S}-\mathrm{P}-\mathrm{C}-\mathrm{P}$ torsion angles of 48.4 and 48.7 (5) ${ }^{\circ}$.

(I)

Selected molecular dimensions for (I) are presented in Table 1. The $\mathrm{P}=\mathrm{S}$ and $\mathrm{P}-\mathrm{C}$ (methylene) bond lengths in (I) are comparable with those of Me4 $[\mathrm{P}=\mathrm{S} 1.958$ (1) and 1.960 (1) \AA, and $\mathrm{P}-\mathrm{C} 1.822$ (2) and 1.818 (2) \AA], although $\mathrm{P}-\mathrm{C} 2$ is slightly longer. This may be attributable to the steric pressure of the bulky tert-butyl group, as may the appreciably different bond lengths $\mathrm{P} 1-\mathrm{C} 2$ and $\mathrm{P} 2-\mathrm{C} 6$. The bond angle $\mathrm{S} 1=\mathrm{P} 1-\mathrm{C} 1$ appears normal $[c f . \operatorname{Me} 4 ; 115.5$ (1) and $116.6(1)^{\circ}$], but $\mathrm{S} 2=\mathrm{P} 2-\mathrm{C} 1$ is unusually narrow at 108.91 (6) ${ }^{\circ}$. The angle at the methylene C atom is wide $[c f$. Me4; 119.0 (1) ${ }^{\circ}$, which may also be caused by steric effects; comparable structures for a more detailed analysis are not available.

Received 15 August 2002
Accepted 16 August 2002
Online 23 August 2002

Experimental

Attempts to recrystallize bis[(di-tert-butylphosphanyl)methyl]methylphosphane trisulfide (Krill et al., 1993) from diethyl ethertoluene led unexpectedly to crystals of the title compound.

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{26} \mathrm{P}_{2} \mathrm{~S}_{2}$
$M_{r}=284.38$
Orthorhombic, Pnma
$a=18.298$ (5) A
$b=12.792$ (3) \AA
$c=6.586$ (2) \AA
$V=1541.6$ (7) \AA^{3}
$Z=4$
$D_{x}=1.225 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Stoe Stadi-4 diffractometer
ω / θ scans
2346 measured reflections
1854 independent reflections
1712 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.072$
$S=1.07$
1854 reflections
80 parameters
H -atom parameters constrained
Mo $K \alpha$ radiation
Cell parameters from 52 reflections
$\theta=10-11.5^{\circ}$
$\mu=0.53 \mathrm{~mm}^{-1}$
$T=143$ (2) K
Tablet, colourless
$0.7 \times 0.6 \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& h=-2 \rightarrow 23 \\
& k=-9 \rightarrow 16 \\
& l=-8 \rightarrow 8 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 60 \mathrm{~min}
\end{aligned}
$$ intensity decay: none

Table 1
Selected geometric parameters $\left({ }^{\circ},{ }^{\circ}\right)$.

P1-C1	$1.8464(18)$	$\mathrm{P} 2-\mathrm{C} 6$	$1.7948(15)$
$\mathrm{P} 1-\mathrm{C} 2$	$1.8711(13)$	$\mathrm{P} 2-\mathrm{C} 1$	$1.8266(18)$
$\mathrm{P} 1-\mathrm{S} 1$	$1.9631(8)$	$\mathrm{P} 2-\mathrm{S} 2$	$1.9552(8)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2$	$103.61(5)$	$\mathrm{C} 6-\mathrm{P} 2-\mathrm{C} 1$	$108.37(6)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 2^{\mathrm{i}}$	$114.34(8)$	$\mathrm{C} 6-\mathrm{P} 2-\mathrm{S} 2$	$112.87(5)$
$\mathrm{C} 1-\mathrm{P} 1-\mathrm{S} 1$	$114.18(6)$	$\mathrm{C} 1-\mathrm{P} 2-\mathrm{S} 2$	$108.91(6)$
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{S} 1$	$110.43(5)$	$\mathrm{P} 2-\mathrm{C} 1-\mathrm{P} 1$	$124.31(10)$
$\mathrm{C} 6^{\mathrm{i}}-\mathrm{P} 2-\mathrm{C} 6$	$105.27(11)$		
			0.0
$\mathrm{~S} 2-\mathrm{P} 2-\mathrm{C} 1-\mathrm{P} 1$	180.0	$\mathrm{~S} 1-\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2$	
$\mathrm{C} 2-\mathrm{P} 1-\mathrm{C} 1-\mathrm{P} 2$	$120.17(5)$	$\mathrm{C} 1-\mathrm{P} 1-\mathrm{C} 2-\mathrm{C} 4$	$-179.55(10)$

Symmetry code: (i) $x, \frac{1}{2}-y, z$.
The methylene H atoms were included using a riding model, while methyl H atoms were identified in difference syntheses and refined

Figure 1
The molecule of the title compound in the crystal. Ellipsoids represent 30% probability levels. H -atom radii are arbitrary. Only the asymmetric unit is numbered.
using idealized rigid methyl groups allowed to rotate but not tip. CH bond lengths were fixed at 0.98 and $0.99 \AA$ for methyl and methylene H atoms, respectively; $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times the $U_{\text {eq }}$ values of the parent atom.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. The authors thank Mr A. Weinkauf for technical assistance.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Karsch, H. H., Baumgartner, G., Gamper, S., Lachmann, J. \& Müller, G. (1992). Chem. Ber. 125, 1333-1339.

Krill, J., Shevchenko, I. V., Fischer, A., Jones, P. G. \& Schmutzler, R. (1993). Chem. Ber. 126, 2379-2382.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

